Modeling the morphogenesis of brine channels in sea ice.

نویسندگان

  • B Kutschan
  • K Morawetz
  • S Gemming
چکیده

Brine channels are formed in sea ice under certain constraints and represent a habitat of different microorganisms. The complex system depends on a number of various quantities as salinity, density, pH value, or temperature. Each quantity governs the process of brine channel formation. There exists a strong link between bulk salinity and the presence of brine drainage channels in growing ice with respect to both the horizontal and vertical planes. We develop a suitable phenomenological model for the formation of brine channels both referring to the Ginzburg-Landau theory of phase transitions as well as to the chemical basis of morphogenesis according to Turing. It is possible to conclude from the critical wave number on the size of the structure and the critical parameters. The theoretically deduced transition rates have the same magnitude as the experimental values. The model creates channels of similar size as observed experimentally. An extension of the model toward channels with different sizes is possible. The microstructure of ice determines the albedo feedback and plays therefore an important role for large-scale global circulation models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Living at extremes

The Biochemist — February 2005. © 2005 Biochemical Society 12 of metres thick. The majority of the ice in the Southern Ocean lasts only less than 1 year, and the average Antarctic sea ice thickness is 1 m. In contrast, in the Arctic Ocean sea ice can last several years and the average thickness is generally 2 m. When ice forms from freshwater, the result is a hard brittle solid with the primary...

متن کامل

Brine fluxes from growing sea ice

[1] It is well known that brine drainage from growing sea ice has a controlling influence on its mechanical, electromagnetic, biological and transport properties, and hence upon the buoyancy forcing and ecology in the polar oceans. When the ice has exceeded a critical thickness the drainage process is dominated by brine channels: liquid conduits extending through the ice. We describe a theoreti...

متن کامل

Implications of brine channel geometry and surface area for the interaction of sympagic organisms in Arctic sea ice

Dynamic temporal and spatial changes of physical, chemical and spatial properties of sea ice pose many challenges to the sympagic community which inhabit a network of brine channels in its interior. Experiments were conducted to reveal the influence of the internal surface area and the structure of the network on species composition and distribution within sea ice. The surface of the brine chan...

متن کامل

Modeling the anisotropic brine microstructure in first-year Arctic sea ice

[1] Cross-borehole DC resistivity tomography has recently been used to monitor the temporal variation of the anisotropic bulk electrical resistivity of first-year Arctic sea ice during the period of spring warming. These measurements cannot be explained by standard models of sea ice microstructure which treat the brine phase as isolated ellipsoidal pores. A simple structural model which does sa...

متن کامل

Visualizing brine channel development and convective processes during artificial sea-ice growth using Schlieren optical methods

Two non-invasive optical Schlieren methods have been adapted to visualize brine channel development and convective processes in experimentally grown sea ice obtained when a NaCl aqueous solution is cooled from above in a quasi-two-dimensional Hele–Shaw cell. The two different visualization methods, i.e. traditional and synthetic Schlieren optical imaging, produce high spatial resolution images ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 81 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2010